
Reed-Solomon decoder IP core

Tom Szilagyi

Product datasheet

The Reed-Solomon decoder IP core is a highly versa-
tile core generator for creating hardware Reed-Solomon
decoder circuits suitable for high speed decoding of
the ubiquitous Reed-Solomon Forward Error Correction
(FEC) code. This code is used in a wide variety of data
storage and transmission applications, such as the Com-
pact Disc, DVD, various kinds of magnetic storage, dig-
ital subscriber lines and satellite communications.

The core generator is a Java application gener-
ating highly comprehensible, standard, device- and
technology-independent VHDL code ready for con-
sumption by industrial FPGA synthesis tools or ASIC
processes, while also being suitable for educational
use. Generated cores meet the requirements of various
standards that specify Reed-Solomon codes, including
ATSC, CCSDS1, DVB, IESS-308 and Intelsat channel
coding modes.

1 Features
• High speed, fully synchronous Reed-Solomon de-

coder using a single clock

• Implements any decoder specified via code param-
eters or chosen presets

• Supports continuous input data with no gaps be-
tween blocks

• One symbol in and out per clock cycle at any con-
figuration

• Symbol size ranges from 3 to 12 bits; any primitive
field polynomial usable for a given symbol size

• Supports shortened codes and erasure decoding

• Indicates errors, counts number of errors corrected
and flags failures

• Support for marker bits useful for tagging input
data, output in sync with output data

• User configurable generation of optional parts:
VHDL for unused features is not generated, thus
conserving resources

• Support for generating VHDL testbench matching
the actual configuration, exercising all core features,
as well as test input and reference output data

1Note that the converter to and from the dual-basis symbol
representation required by the CCSDS standard is not generated,
but has to be manually implemented as described in TM Syn-
chronization and Channel Coding. Blue Book. Issue 1. Septem-
ber 2003. available at http://public.ccsds.org/publications/
archive/131x0b1.pdf

2 Pinout

The pinout diagram of the generated Reed-Solomon core
is shown in Figure 1. Common pins (present in all config-
urations) are shown with solid (black) arrowheads. Op-
tional pins are shown with hollow (white) arrowheads.
The pins are described in Table 1. Note that there are a
few inter-dependencies between the optional pins, that
is, enabling certain pins is required to get access to oth-
ers. This is because certain parts of the generated logic
depend on the presence of others. It is possible to select
all or none of the optional pins.

marker_in [4]

erasure_in

data_in [8]

sync_in

ce

reset

clk

marker_out [4]

info_end

sync_end

delayed_out [8]

data_out [8]

sync_out

fail

error_count [3]

error_found

Figure 1: Core pinout diagram

The pins info_end and error_found are dependent on
sync_end being enabled in the configuration. The er-
ror_count output depends on error_found (and thus also
sync_end), while fail depends on error_count (and thus
also error_found and sync_end).

3 Core generator parameters

The core generator is a standalone Java application re-
quiring the Sun Java Runtime Environment (JRE) Stan-
dard Edition (SE) version 1.6 (also known as version 6)2.
It guides the user through the task of configuring a par-
ticular Reed-Solomon decoder via an intuitive graphical
user interface. The GUI enforces meaningful parameter
combinations and indicates errors in the configuration
that would lead to a malfunctioning core. Support is
provided for saving the settings and loading them from
a text file, as well as selecting predefined parameter sets

2The Java JRE can be freely downloaded from http://java.
com/en/download and is available for all major computing plat-
forms.

1



Signal Direction Optional Description
clk input no Clock, active on rising edge
reset input no Active high asynchronous reset
ce input yes Clock enable

sync_in input no Codeword sync input. Must be driven high when first symbol of a
codeword is passed to data_in, low otherwise

data_in input no Input data
erasure_in input yes Flag an input symbol as an erasure
marker_in input yes Marker data input

sync_out output no Codeword sync output, indicates the first symbol of a codeword
being output

data_out output no Corrected output data

delayed_out output yes Original input data delayed with the core latency (in sync with
data_out)

sync_end output yes Codeword end sync, indicates the last symbol of a codeword
being output

info_end output yes Payload end sync, indicates the last symbol of the payload being
output

error_found output yes Indicates that there was at least one error in the last codeword
error_count output yes Outputs the number of errors corrected in the last codeword

fail output yes Indicates whether there was a decoding failure in the last
codeword

marker_out output yes Marker data output: data passed to marker_in delayed with core
latency

Table 1: Core I/O signals

according to some popular standards. The input param-
eters are described below.

3.1 Code parameters
Symbol Description Range
M Symbol width 3 . . . 12 bits
n/a Field polynomial Any valid value
N Codeword length 4 / 6 . . . 2M − 1
K Payload length 2 / 4 . . . N − 2
m0 Generator start index 0 . . . 2M − 2
h Scaling factor 1 . . . 2M − 2

The lower limits of N and K depend on whether era-
sure decoding is supported by the core. If erasure de-
coding is not supported, K = 2 and as a result N = 4. If
erasure decoding capability is requested, the lower limits
for K and N are increased to 4 and 6, respectively.

The field polynomial is entered in decimal notation,
for example at M = 8 bits per symbol a valid (and
popular) field polynomial is 391 which is the decimal
notation for α8 + α7 + α2 + α + 1 where α commonly
denotes the primitive element of the Galois Field3.

The generator polynomial of the code that the Reed-
Solomon decoder “understands” is given by the formula

G(z) =

R−1∏
i=0

(
z − αh(m0+i)

)
where R = N − K is the number of parity symbols.
The formula shows the effect m0 and h have on the re-
sult. The generator polynomial is conventionally the

3For all valid field polynomials refer to the document Table of
GF

(
2M

)
field polynomials available as a separate download.

product of the first R terms of the form
(
z − αi

)
, where

0 5 i < R. In our case m0 allows to set the first root
index (the lower limit of i) to differ from 0. Similarly h
allows to have a spacing other than 1 between the root
indices. It is important to note that h and the number
of elements in GF

(
2
M
)
have to be relative primes, i.e.

gcd
(
h, 2M − 1

)
= 1 must be true, otherwise an incor-

rect core would be generated. This condition is enforced
by the core generator GUI. A further restriction on the
available code parameters is

T = 2 , T =

{
R (erasures on)⌊
1
2R
⌋

(erasures off)

also enforced by the core generator application.

3.2 Optional features

The GUI lets the user select which optional features
are desired while enforcing the aforementioned inter-
dependencies. The width of the marker word (if used)
can also be set in the range of 1–16 bits.

3.3 Output setup

The software lets setting the name of the Reed-Solomon
decoder’s top VHDL entity to avoid namespace collisions
when multiple decoder cores are used in the same hard-
ware project. This VHDL entity also acts as a prefix for
the name of all sub-entities.

The core generator can optionally produce a VHDL
testbench which reads input vectors from file, feeds them
to the core, and compares the output from the core to

2



reference output also read from file. A configurable num-
ber of input testvectors are generated along with refer-
ence output. This is useful for verifying the functionality
of the generated core.

The last step before the decoder’s VHDL sources can
be generated is specifying a target directory. A new
directory named after the VHDL entity will be created
here, containing the decoder’s VHDL source files along
with the testbench input and reference output data (if
selected).

4 Signal timing and behaviour

4.1 Core latency

The core has a fixed latency for any configuration pa-
rameter set. The core reads a new symbol at each clock
cycle (enabled with ce, if selected) while outputting a
corrected symbol at the same time. Thus, no extra
buffering or flow control is necessary. The core latency
equation is

L = N +R+ T + 2 , T =

{
R (erasures on)⌊
1
2R
⌋

(erasures off)

Unlike some other implementations, the generated
core never “runs out of time” for processing input data,
despite the fact that the number of clock cycles needed
to process a codeword (L) is greater than the length of
a codeword (N). This capability is due to the pipelined
design of the core.

4.2 General signal timing

Apart from the asynchronous reset signal, ce, and the er-
ror statistics outputs error_found, error_count and fail,
each pin is sampled or set on each rising edge of clk,
provided that ce is high at the time. ce is a true clock
enable; deasserting it completely freezes the core’s op-
eration. Asserting reset clears internal counters of the
design; however, it does not clear all internal data regis-
ters. After reset has been deasserted, output is undefined
until the first symbol is output L clock cycles after it has
been input.

If there are gaps between input codewords (sync_in
is not high every N clock cycles) then there are cor-
responding gaps in the output during which the core
acts as a dumb pipe of length L. That is, data_out
and delayed_out mirror data_in, and marker_out mir-
rors marker_in with a delay of L clock cycles. The error
statistics outputs hold their previously acquired values,
while sync_out, sync_end and info_end are held zero.

Figure 2. illustrates the general input timing showing
the use of sync_in and erasure_in. The figure shows that
the beginning of a new codeword has been indicated
via sync_in. Of the codeword symbols being input to
data_in, D2 and D4 have been flagged as erasures via
erasure_in.

clk

sync_in

data_in

erasure_in

D D D D D D0 1 2 3 4 5

Figure 2: General input timing

4.3 Error statistics

The error statistics outputs error_found, error_count
and fail are set after each codeword has been output.
The values corresponding to a codeword are set on the
rising edge of clk just after the last symbol has been out-
put. If there are no gaps between codewords, this rising
edge of clk also outputs the first symbol of the next code-
word (sync_out is high). The above are demonstrated
by Figure 3. which shows the timing of the fail output.
The other error statistics outputs work in the same way.

data_out

sync_out

clk

fail

data

fail

data

fail

i

i

i

i−1

+1

Figure 3: Statistics output timing

All error statistics outputs are held valid while the
next codeword is being output, after which they are up-
dated on the succeeding rising edge of clk. After a reset
they are undefined until after the first codeword ends.

The core sets fail high if, after decoding a codeword, it
is determined that not all errors in the input codeword
were corrected. If the number of errors in the input
codeword exceeds the error correcting capacity of the
Reed-Solomon code, it is usually possible to detect this
condition and assert fail. However, there may be cases
when this is impossible. Note that this is a theoreti-
cal limitation and not a flaw in the decoder core. The
probability of missing a decoding failure diminishes as
R increases. Enabling erasure decoding support consid-
erably increases this probability. For typical configura-
tions (8 5 R 5 20) and erasure decoding off, the prob-
ability of missing a decoding failure is on the order of
10−4 . . . 10−8 or even lower. With erasure decoding sup-
port enabled, this may rise to as high as 10−1 . . . 10−4.
These figures have been obtained via simulation over
an artificial noisy channel where – in case of an uncor-
rectable codeword – the probability of exactly k symbol
errors in the codeword is P (k) = 1

2k−T for T < k 5 N .

In case of a decoding failure (detected or not) the
corresponding values on data_out are undefined.

3



Property ATSC DVB 1 DVB 2 CCSDS
M 8 8 8 8
N 207 204 204 255
K 187 188 188 223
R 20 16 16 32
m0 0 0 0 112
h 1 1 1 11
Field Polynomial 285 285 285 391
Erasure decoding no no yes no
Latency 239 230 238 305
Slice utilisation [%] 23 19 39 40
LUT/FF pairs 907 744 1486 1439
LUTs 2477 2021 4444 4208
FFs 165 135 185 212
18k BRAMs 2 2 3 3
Max clock freq [MHz] 150 150 130 135

Table 2: Example decoders

5 Performance and resource usage

The area of the core increases with M , R, N (in this
order of significance) and the optional features that are
selected. Note that erasure decoding support is partic-
ularly resource-hungry: enabling it roughly doubles the
overall resource demand! There is also a notable de-
crease in achievable clock speeds as the complexity of
the decoder increases. However, this is less significant
than the variance of the area requirement, since speed
only varies according to the number of levels of logic,
which is a logarithmic function of the total gate com-
plexity.

When the selected parameters satisfy R + T > N , a
slightly less area-efficient version of the Key Equation
Solver module is generated because of pipeline limita-
tions. However, such parameter sets are not used in
practice.

Although the core generator supports symbol sizes up
to 12 bits and the number of parity symbols can be as
high as N − 2, there are practical limits on the size of
a synthesizable core. In particular, symbol sizes above
M = 10 and parity symbols above T ≈ 20 yield cores
that are too large to be implemented on current devices.

Table 2. shows performance and usage information
for a few decoders implemented as examples with the
freely available Xilinx ISE toolset. Optional pins were
not used unless otherwise stated. The Xilinx FPGA
XC5VLX (speed grade -3) was chosen for implementa-
tion. PAR effort was set to high with optimisation tar-
get set to speed. Note that resource usage and especially
the maximum achievable clock frequency may vary with
the settings of the ISE project and new versions of the
Xilinx implementation tools. The aim of the figures is
to give a hint about the achievable results (speed values
have been slightly rounded downwards for safety), and
are believed to be accurate within 10%.

To gain an overview of basic parameter dependencies,
a representative set of decoders were implemented at a
symbol width of M = 8 on the same FPGA device. No
optional pins were used. PAR settings were left at Xilinx

ISE application defaults (standard effort, area optimisa-
tion). The number of parity symbols were R = 4, 8, 12,
16 and 20. Codeword lengths were N = 16, 32, 64, 128,
192 and 255. All valid combinations of these parameters
were formed.

Figure 4. indicates implementation results. The com-
bined number4 of LUTs and flip-flops as well as the
maximum clock frequency are shown as a function of
R. Since the results depend only slightly on N , the dif-
ferences that stem from different values of N for a given
R have been merged into error bars. Values shown are
averages for all N while the errors show the greatest
difference from the average value within the result set.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

4 8 12 16 20
 130

 140

 150

 160

 170

 180

 190

 200

 210

C
o
m

b
in

e
d
 L

U
T

+
F

F
 u

s
a
g
e

M
a
x
 c

lo
c
k
 f
re

q
 [
M

H
z
]

R

LUT+FF
MHz

Figure 4: Performance and resource usage

Further information
The Reed-Solomon decoder IP core has been developed
by Tom Szilagyi. Visit the product website at:
http://tomszilagyi.github.io/prod/reed-solomon
for updates and supplemental information.
Inquiries should be sent to tomszilagyi@gmail.com.

4This number includes slices with an unused flip-flop, slices
with an unused LUT, and slices with fully used LUT-FF pairs.

4


